An alternative formulation of finite difference WENO schemes with Lax-Wendroff time discretization for conservation laws

نویسندگان

  • Yan Jiang
  • Chi-Wang Shu
  • Mengping Zhang
چکیده

We develop an alternative formulation of conservative finite difference weighted essentially non-oscillatory (WENO) schemes to solve conservation laws. In this formulation, the WENO interpolation of the solution and its derivatives are used to directly construct the numerical flux, instead of the usual practice of reconstructing the flux functions. Even though this formulation is more expensive than the standard formulation, it does have several advantages. The first advantage is that arbitrary monotone fluxes can be used in this framework, while the traditional practice of reconstructing flux functions can be applied only to smooth flux splitting. The second advantage, which is fully explored in this paper, is that it is more straightforward to construct a Lax-Wendroff time discretization procedure, with a Taylor expansion in time and with all time derivatives replaced by spatial derivatives through the partial differential equations, resulting in a narrower effective stencil compared with previous high order finite difference WENO scheme based on the reconstruction of flux functions with a Lax-Wendroff time discretization. We will describe the scheme formulation and present numerical tests for oneand two-dimensional scalar and system conservation laws demonstrating the designed high order accuracy and non-oscillatory performance of the schemes constructed in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes

In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified ...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

A posteriori error estimation for the Lax-Wendroff finite difference scheme

In many application domains, the preferred approaches to the numerical solution of hyperbolic partial differential equations such as conservation laws are formulated as finite difference schemes. While finite difference schemes are amenable to physical interpretation, one disadvantage of finite difference formulations is that it is relatively difficult to derive the so-called goal oriented a po...

متن کامل

Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

The Lax-Wendro↵ time discretization is an alternative method to the popular total variation diminishing Runge-Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and e cient than RKDG methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012